详解tensorflow训练自己的数据集实现CNN图像分类-创新互联
利用卷积神经网络训练图像数据分为以下几个步骤
1.读取图片文件
2.产生用于训练的批次
3.定义训练的模型(包括初始化参数,卷积、池化层等参数、网络)
4.训练
1 读取图片文件
def get_files(filename): class_train = [] label_train = [] for train_class in os.listdir(filename): for pic in os.listdir(filename+train_class): class_train.append(filename+train_class+'/'+pic) label_train.append(train_class) temp = np.array([class_train,label_train]) temp = temp.transpose() #shuffle the samples np.random.shuffle(temp) #after transpose, images is in dimension 0 and label in dimension 1 image_list = list(temp[:,0]) label_list = list(temp[:,1]) label_list = [int(i) for i in label_list] #print(label_list) return image_list,label_list
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
名称栏目:详解tensorflow训练自己的数据集实现CNN图像分类-创新互联
网页地址:http://scgulin.cn/article/dcegjg.html