关于sparknosql的信息-古蔺大橙子建站
RELATEED CONSULTING
相关咨询
选择下列产品马上在线沟通
服务时间:8:30-17:00
你可能遇到了下面的问题
关闭右侧工具栏

新闻中心

这里有您想知道的互联网营销解决方案
关于sparknosql的信息

Spark可以完全替代hadoop吗

Spark已经取代Hadoop成为最活跃的开源大数据项目,但是,在选择大数据框架时,企业不能因此就厚此薄彼

创新互联是一家专注于成都网站建设、网站制作与策划设计,天坛街道网站建设哪家好?创新互联做网站,专注于网站建设十余年,网设计领域的专业建站公司;建站业务涵盖:天坛街道等地区。天坛街道做网站价格咨询:13518219792

近日,著名大数据专家Bernard Marr在一篇文章中分析了Spark和 Hadoop 的异同

Hadoop和Spark均是大数据框架,都提供了一些执行常见大数据任务的工具,但确切地说,它们所执行的任务并不相同,彼此也并不排斥

虽然在特定的情况下,Spark据称要比Hadoop快100倍,但它本身没有一个分布式存储系统

而分布式存储是如今许多大数据项目的基础,它可以将 PB 级的数据集存储在几乎无限数量的普通计算机的硬盘上,并提供了良好的可扩展性,只需要随着数据集的增大增加硬盘

因此,Spark需要一个第三方的分布式存储,也正是因为这个原因,许多大数据项目都将Spark安装在Hadoop之上,这样,Spark的高级分析应用程序就可以使用存储在HDFS中的数据了

与Hadoop相比,Spark真正的优势在于速度,Spark的大部分操作都是在内存中,而Hadoop的MapReduce系统会在每次操作之后将所有数据写回到物理存储介质上,这是为了确保在出现问题时能够完全恢复,但Spark的弹性分布式数据存储也能实现这一点

另外,在高级数据处理(如实时流处理、机器学习)方面,Spark的功能要胜过Hadoop

在Bernard看来,这一点连同其速度优势是Spark越来越受欢迎的真正原因

实时处理意味着可以在数据捕获的瞬间将其提交给分析型应用程序,并立即获得反馈

在各种各样的大数据应用程序中,这种处理的用途越来越多,比如,零售商使用的推荐引擎、制造业中的工业机械性能监控

Spark平台的速度和流数据处理能力也非常适合机器学习算法,这类算法可以自我学习和改进,直到找到问题的理想解决方案

这种技术是最先进制造系统(如预测零件何时损坏)和无人驾驶汽车的核心

Spark有自己的机器学习库MLib,而Hadoop系统则需要借助第三方机器学习库,如Apache Mahout

实际上,虽然Spark和Hadoop存在一些功能上的重叠,但它们都不是商业产品,并不存在真正的竞争关系,而通过为这类免费系统提供技术支持赢利的公司往往同时提供两种服务

例如,Cloudera 就既提供 Spark服务也提供 Hadoop服务,并会根据客户的需要提供最合适的建议

Bernard认为,虽然Spark发展迅速,但它尚处于起步阶段,安全和技术支持基础设施方还不发达,在他看来,Spark在开源社区活跃度的上升,表明企业用户正在寻找已存储数据的创新用法

大数据核心技术有哪些?

大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等。

1、数据采集与预处理:FlumeNG实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据;Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。

2、数据存储:Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。

3、数据清洗:MapReduce作为Hadoop的查询引擎,用于大规模数据集的并行计算。

4、数据查询分析:Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供HQL(HiveSQL)查询功能。Spark启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。

5、数据可视化:对接一些BI平台,将分析得到的数据进行可视化,用于指导决策服务。

深入浅出Spark什么是Spark

Spark是基于内存,是云计算领域的继Hadoop之后的下一代的最热门的通用的并行计算框架开源项目,尤其出色的支持Interactive Query、流计算、图计算等。

Spark在机器学习方面有着无与伦比的优势,特别适合需要多次迭代计算的算法。同时Spark的拥有非常出色的容错和调度机制,确保系统的稳定运行,Spark目前的发展理念是通过一个计算框架集合SQL、Machine Learning、Graph Computing、Streaming Computing等多种功能于一个项目中,具有非常好的易用性。

目前SPARK已经构建了自己的整个大数据处理生态系统,如流处理、图技术、机器学习、NoSQL查询等方面都有自己的技术,并且是Apache顶级Project,可以预计的是2014年下半年在社区和商业应用上会有爆发式的增长。

国内的淘宝、优酷土豆等已经使用Spark技术用于自己的商业生产系统中,国内外的应用开始越来越广泛,国外一些大型互联网公司已经部署了Spark。甚至连Yahoo是Hadoop的早期主要贡献者,现在也在多个项目中部署使用Spark,国内我们已经在运营商、电商等传统行业部署了Spark.

百度百科传送门:

大数据技术有哪些 核心技术是什么

随着大数据分析市场迅速扩展,哪些技术是最有需求和最有增长潜力的呢?在Forrester Research的一份最新研究报告中,评估了22种技术在整个数据生命周期中的成熟度和轨迹。这些技术都对大数据的实时、预测和综合洞察有着巨大的贡献。

1. 预测分析技术

这也是大数据的主要功能之一。预测分析允许公司通过分析大数据源来发现、评估、优化和部署预测模型,从而提高业务性能或降低风险。同时,大数据的预测分析也与我们的生活息息相关。淘宝会预测你每次购物可能还想买什么,爱奇艺正在预测你可能想看什么,百合网和其他约会网站甚至试图预测你会爱上谁……

2. NoSQL数据库

NoSQL,Not Only SQL,意思是“不仅仅是SQL”,泛指非关系型数据库。NoSQL数据库提供了比关系数据库更灵活、可伸缩和更便宜的替代方案,打破了传统数据库市场一统江山的格局。并且,NoSQL数据库能够更好地处理大数据应用的需求。常见的NoSQL数据库有HBase、Redis、MongoDB、Couchbase、LevelDB等。

3. 搜索和知识发现

支持来自于多种数据源(如文件系统、数据库、流、api和其他平台和应用程序)中的大型非结构化和结构化数据存储库中自助提取信息的工具和技术。如,数据挖掘技术和各种大数据平台。

4. 大数据流计算引擎

能够过滤、聚合、丰富和分析来自多个完全不同的活动数据源的数据的高吞吐量的框架,可以采用任何数据格式。现今流行的流式计算引擎有Spark Streaming和Flink。

5. 内存数据结构

通过在分布式计算机系统中动态随机访问内存(DRAM)、闪存或SSD上分布数据,提供低延迟的访问和处理大量数据。

6. 分布式文件存储

为了保证文件的可靠性和存取性能,数据通常以副本的方式存储在多个节点上的计算机网络。常见的分布式文件系统有GFS、HDFS、Lustre 、Ceph等。

7. 数据虚拟化

数据虚拟化是一种数据管理方法,它允许应用程序检索和操作数据,而不需要关心有关数据的技术细节,比如数据在源文件中是何种格式,或者数据存储的物理位置,并且可以提供单个客户用户视图。

8. 数据集成

用于跨解决方案进行数据编排的工具,如Amazon Elastic MapReduce (EMR)、Apache Hive、Apache Pig、Apache Spark、MapReduce、Couchbase、Hadoop和MongoDB等。

9. 数据准备

减轻采购、成形、清理和共享各种杂乱数据集的负担的软件,以加速数据对分析的有用性。

10. 数据质量

使用分布式数据存储和数据库上的并行操作,对大型高速数据集进行数据清理和充实的产品。


网站名称:关于sparknosql的信息
当前地址:http://scgulin.cn/article/hcohjg.html