python如何实现类似matlab的小波滤波?
T=wpdec(y,5,'db40');
成都创新互联公司专注于企业网络营销推广、网站重做改版、维西网站定制设计、自适应品牌网站建设、成都h5网站建设、商城网站建设、集团公司官网建设、成都外贸网站建设公司、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为维西等各大城市提供网站开发制作服务。
%信号y进行波包解层数5T波树plot看
a10=wprcoef(T,[1,0]);
%a10节点[1,0]进行重构信号貌似没层重构说吧能某层某节点进行重构节点编号波树
%以下为滤波程序(主要调节参数c的大小)
c=10;
wn=0.1;
fs=50000; %采样频率;
b=fir1(c,wn/(fs/2),hamming(c+1));
y1=filtfilt(b,1,y);%对y滤波。
python中怎么生成基于窗函数的fir滤波器
SciPy提供了firwin用窗函数设计低通滤波器,firwin的调用形式如下:
firwin(N, cutoff, width=None, window='hamming')
其中N为滤波器的长度;cutoff为以正规化的频率;window为所使用的窗函数。
如何用python实现图像的一维高斯滤波器
如何用python实现图像的一维高斯滤波器
现在把卷积模板中的值换一下,不是全1了,换成一组符合高斯分布的数值放在模板里面,比如这时中间的数值最大,往两边走越来越小,构造一个小的高斯包。实现的函数为cv2.GaussianBlur()。对于高斯模板,我们需要制定的是高斯核的高和宽(奇数),沿x与y方向的标准差(如果只给x,y=x,如果都给0,那么函数会自己计算)。高斯核可以有效的出去图像的高斯噪声。当然也可以自己构造高斯核,相关函数:cv2.GaussianKernel().
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread(‘flower.jpg‘,0) #直接读为灰度图像
for i in range(2000): #添加点噪声
temp_x = np.random.randint(0,img.shape[0])
temp_y = np.random.randint(0,img.shape[1])
img[temp_x][temp_y] = 255
blur = cv2.GaussianBlur(img,(5,5),0)
plt.subplot(1,2,1),plt.imshow(img,‘gray‘)#默认彩色,另一种彩色bgr
plt.subplot(1,2,2),plt.imshow(blur,‘gray‘)
python 中一维数据中值滤波函数,在matlab中有 medfilt1函数,Python中有吗,只找到了图像2维的,
有的,在numpy包中
import numpy as np
dat = [1,3,5,6,7,2,4]
med = np.median(dat) # med=4.0
新闻名称:python中的滤波函数 python 过滤函数
转载来源:http://scgulin.cn/article/hhihhd.html