小编给大家分享一下leetcode中如何解决三数之和问题,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!
目前创新互联公司已为1000+的企业提供了网站建设、域名、网页空间、网站改版维护、企业网站设计、云冈网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。
题目链接
https://leetcode-cn.com/problems/3sum/
题目描述
给定一个包含 n
个整数的数组 nums
,判断 nums
中是否存在三个元素 a,b,c
,使得 a + b + c = 0
?找出所有满足条件且不重复的三元组。
注意:答案中不可以包含重复的三元组。
例如, 给定数组 nums = [-1, 0, 1, 2, -1, -4],
满足要求的三元组集合为:
[
[-1, 0, 1],
[-1, -1, 2]
]
解题方案
思路
标签:数组遍历
首先对数组进行排序,排序后固定一个数nums[i],再使用左右指针指向nums[i]后面的两端,数字分别为nums[L]和nums[R],计算三个数的和sum判断是否满足为0,满足则添加进结果集
如果nums[i]大于0,则三数之和必然无法等于0,结束循环
如果nums[i] == nums[i-1],则说明该数字重复,会导致结果重复,所以应该跳过
当sum == 0时,nums[L] == nums[L+1]则会导致结果重复,应该跳过,L++
当sum == 0时,nums[R] == nums[R-1]则会导致结果重复,应该跳过,R--
时间复杂度:O(n^2),n为数组长度
代码
Java版本
class Solution {
public static List> threeSum(int[] nums) {
List> ans = new ArrayList();
Arrays.sort(nums); // 排序
int len = nums.length;
if(nums == null || len < 3) return ans;
for (int i = 0; i < len ; i++) {
if(nums[i] > 0) break; // 如果当前数字大于0,则三数之和一定大于0,所以结束循环
if(i > 0 && nums[i] == nums[i-1]) continue; // 去重
int L = i+1;
int R = len-1;
while(L < R){
int sum = nums[i] + nums[L] + nums[R];
if(sum == 0){
ans.add(Arrays.asList(nums[i],nums[L],nums[R]));
while (L while (L L++;
R--;
}
else if (sum < 0) L++;
else if (sum > 0) R--;
}
}
return ans;
}
}
JavaScript版本
/**
* @param {number[]} nums
* @return {number[][]}
*/
var threeSum = function(nums) {
let ans = [];
nums.sort((a, b) => a - b); // 排序
const len = nums.length;
if(nums == null || len < 3) return ans;
for (let i = 0; i < len ; i++) {
if(nums[i] > 0) break; // 如果当前数字大于0,则三数之和一定大于0,所以结束循环
if(i > 0 && nums[i] == nums[i-1]) continue; // 去重
let L = i+1;
let R = len-1;
while(L < R){
const sum = nums[i] + nums[L] + nums[R];
if(sum == 0){
ans.push([nums[i],nums[L],nums[R]]);
while (L while (L L++;
R--;
}
else if (sum < 0) L++;
else if (sum > 0) R--;
}
}
return ans;
};
画解
以上是“leetcode中如何解决三数之和问题”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!
新闻标题:leetcode中如何解决三数之和问题
文章转载:http://scgulin.cn/article/iicghh.html