本篇内容介绍了“怎么使用Python中Pandas的索引对齐方法”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
公司主营业务:成都做网站、成都网站建设、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。成都创新互联是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。成都创新互联推出蜀山免费做网站回馈大家。
一.索引对象支持集合运算:联合、交叉、求差、对称差
Demo1:
import pandas as pd import numpy as np college = pd.read_csv('data/college.csv') columns = college.columns c1 = columns[:4] c2 = columns[2:5] print(c1.union(c2)) print(c1 | c2)
Demo2:
import pandas as pd import numpy as np college = pd.read_csv('data/college.csv') columns = college.columns c1 = columns[:4] c2 = columns[2:5] print("c1 : ",c1) print("c2 : ",c2) print(c1.symmetric_difference(c2)) print(c1 ^ c2)
二.用copy()产生新的数据
A is B:表明二者指向的同一个对象。这意味着,如果修改一个,另一个也会去改变。
Demo1:
import pandas as pd import numpy as np employee = pd.read_csv('data/employee.csv', index_col='RACE') salary1 = employee['BASE_SALARY'] salary2 = employee['BASE_SALARY'] print(salary1 is salary2) salary1 = employee['BASE_SALARY'].copy() salary2 = employee['BASE_SALARY'].copy() print(salary1 is salary2)
三.不等索引(索引的difference方法)
Demo1:
用difference,找到哪些索引标签在baseball_14中,却不在baseball_15、baseball_16中
import pandas as pd import numpy as np baseball_14 = pd.read_csv('data/baseball14.csv', index_col='playerID') baseball_15 = pd.read_csv('data/baseball15.csv', index_col='playerID') baseball_16 = pd.read_csv('data/baseball16.csv', index_col='playerID') print(baseball_14.index.difference(baseball_15.index)) print(baseball_14.index.difference(baseball_16.index))
四.使用fill_value避免在算术运算时产生缺失值
Demo1:
import pandas as pd import numpy as np baseball_14 = pd.read_csv('data/baseball14.csv', index_col='playerID') baseball_15 = pd.read_csv('data/baseball15.csv', index_col='playerID') #H列:每名球员的击球数 hits_14 = baseball_14['H'] hits_15 = baseball_15['H'] print(hits_14.head()) print(hits_15.head()) print(hits_14.head() + hits_15.head())
下面四条数据是有记录的,但是因为不同时存在14,15两张表中,所以相加会产生NaN,需要用fill_value
Demo2:
import pandas as pd import numpy as np baseball_14 = pd.read_csv('data/baseball14.csv', index_col='playerID') baseball_15 = pd.read_csv('data/baseball15.csv', index_col='playerID') baseball_16 = pd.read_csv('data/baseball16.csv', index_col='playerID') #H列:每名球员的击球数 hits_14 = baseball_14['H'] hits_15 = baseball_15['H'] hits_16 = baseball_16['H'] print(hits_14.head().add(hits_15.head(),fill_value=0))
*如果一个元素在两个Series都是缺失值,即便使用了fill_value,相加的结果也仍是缺失值
五.从不同的DataFrame追加列
Demo:
import pandas as pd import numpy as np employee = pd.read_csv('data/employee.csv') d1 = employee[['DEPARTMENT', 'BASE_SALARY']] print("排序前:") print(d1.head()) # 在每个部门内,对BASE_SALARY进行排序 d2 = d1.sort_values(['DEPARTMENT', 'BASE_SALARY'],ascending = [True,False]) print("排序后:") print(d2.head()) #用drop_duplicates方法保留每个部门的第一行 d3 = d2.drop_duplicates(subset = 'DEPARTMENT') print('去重后:') print(d3.head()) #使用DEPARTMENT作为行索引 d3 = d3.set_index('DEPARTMENT') employee = employee.set_index('DEPARTMENT') #向employee的DataFrame新增一列 #新增时,对应缺项的为缺失值 #存储每个Department的最高工资 employee['MAX_SALARY'] = d3['BASE_SALARY'] pd.options.display.max_columns = 3 print('合并后:') print(employee.head()) #用query查看是否有BASE_SALARY大于MAX_DEPT_SALARY的 #输出应该为0 print('query结果:') print(employee.query('BASE_SALARY > MAX_SALARY'))
employee[‘MAX_SALARY’] = d3[‘BASE_SALARY’]
这行语句能执行成功的条件是:d3中不含有重复索引,即执行过drop_duplicates
运行结果:
“怎么使用Python中Pandas的索引对齐方法”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!
分享文章:怎么使用Python中Pandas的索引对齐方法
当前网址:http://scgulin.cn/article/ijddco.html