小编给大家分享一下python如何实现拓扑排序,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!
创新互联建站是一家专注于网站制作、成都做网站与策划设计,乌翠网站建设哪家好?创新互联建站做网站,专注于网站建设十余年,网设计领域的专业建站公司;建站业务涵盖:乌翠等地区。乌翠做网站价格咨询:18982081108拓扑排序
几乎在所有的项目,甚至日常生活,待完成的不同任务之间通常都会存在着某些依赖关系,这些依赖关系会为它们的执行顺序行程表部分约束。对于这种依赖关系,很容易将其表示成一个有向无环图(Directed Acyclic Graph,DAG,无环是一个重要条件),并将寻找其中依赖顺序的过程称为拓扑排序(topological sorting)。
拓扑排序要满足如下两个条件
每个顶点出现且只出现一次。
若A在序列中排在B的前面,则在图中不存在从B到A的路径。
拓扑排序算法
任何无回路的顶点活动网(AOV网)N都可以做出拓扑序列:
从N中选出一个入度为0的顶点作为序列的下一顶点。
从N网中删除所选顶点及其所有的出边。
反复执行上面两个步骤,知道已经选出了图中的所有顶点,或者再也找不到入度为非0的顶点时算法结束。
如果剩下入度非0的顶点,就说明N中有回路,不存在拓扑排序。
存在回路,意味着某些活动的开始要以其自己的完成作为先决条件,这种现象成为活动之间的死锁。一种常见的顶点活动网实例是大学课程的先修课程。课程知识有前后练习,一门课可能以其他课程的知识为基础,学生想选修这门课程时,要看是否已修过所有先修课程。如果存在一个回路的话,那就意味着进入了一个循环,那么该同学就毕不了业了。
因此可以说拓扑排序算法是为了做出满足制约关系的工作安排。
下面我们操作一个实例,如下图是一个有向无环图:
用字典表示:G = { 'a':'bce', 'b':'d','c':'d','d':'','e':'cd'}
代码实现:
def toposort(graph): in_degrees = dict((u,0) for u in graph) #初始化所有顶点入度为0 vertex_num = len(in_degrees) for u in graph: for v in graph[u]: in_degrees[v] += 1 #计算每个顶点的入度 Q = [u for u in in_degrees if in_degrees[u] == 0] # 筛选入度为0的顶点 Seq = [] while Q: u = Q.pop() #默认从最后一个删除 Seq.append(u) for v in graph[u]: in_degrees[v] -= 1 #移除其所有指向 if in_degrees[v] == 0: Q.append(v) #再次筛选入度为0的顶点 if len(Seq) == vertex_num: #如果循环结束后存在非0入度的顶点说明图中有环,不存在拓扑排序 return Seq else: print("there's a circle.") G = { 'a':'bce', 'b':'d', 'c':'d', 'd':'', 'e':'cd' } print(toposort(G))
输出结果:
['a', 'e', 'c', 'b', 'd']
图中有环的情况:
G = { 'a':'bce', 'b':'d','c':'d','d':'e','e':'cd'}
输出结果:
there's a circle. None
以上是“python如何实现拓扑排序”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!
当前题目:python如何实现拓扑排序-创新互联
网站地址:http://scgulin.cn/article/jpojo.html