这篇文章主要介绍“如何部署TensorFlow Serving”,在日常操作中,相信很多人在如何部署TensorFlow Serving问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”如何部署TensorFlow Serving”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
创新互联建站是专业的昭平网站建设公司,昭平接单;提供成都网站建设、成都网站设计,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行昭平网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!
准备环境
准备好 TensorFlow 环境,导入依赖:
import sys # Confirm that we're using Python 3 assert sys.version_info.major == 3, 'Oops, not running Python 3. Use Runtime > Change runtime type'
import tensorflow as tf from tensorflow import keras # Helper libraries import numpy as np import matplotlib.pyplot as plt import os import subprocess print(f'TensorFlow version: {tf.__version__}') print(f'TensorFlow GPU support: {tf.test.is_built_with_gpu_support()}') physical_gpus = tf.config.list_physical_devices('GPU') print(physical_gpus) for gpu in physical_gpus: # memory growth must be set before GPUs have been initialized tf.config.experimental.set_memory_growth(gpu, True) logical_gpus = tf.config.experimental.list_logical_devices('GPU') print(len(physical_gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
TensorFlow version: 2.4.1 TensorFlow GPU support: True [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')] 1 Physical GPUs, 1 Logical GPUs
创建模型
载入 Fashion MNIST 数据集:
fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() # scale the values to 0.0 to 1.0 train_images = train_images / 255.0 test_images = test_images / 255.0 # reshape for feeding into the model train_images = train_images.reshape(train_images.shape[0], 28, 28, 1) test_images = test_images.reshape(test_images.shape[0], 28, 28, 1) class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] print('\ntrain_images.shape: {}, of {}'.format(train_images.shape, train_images.dtype)) print('test_images.shape: {}, of {}'.format(test_images.shape, test_images.dtype))
train_images.shape: (60000, 28, 28, 1), of float64 test_images.shape: (10000, 28, 28, 1), of float64
用最简单的 CNN 训练模型,
model = keras.Sequential([ keras.layers.Conv2D(input_shape=(28,28,1), filters=8, kernel_size=3, strides=2, activation='relu', name='Conv1'), keras.layers.Flatten(), keras.layers.Dense(10, name='Dense') ]) model.summary() testing = False epochs = 5 model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=[keras.metrics.SparseCategoricalAccuracy()]) model.fit(train_images, train_labels, epochs=epochs) test_loss, test_acc = model.evaluate(test_images, test_labels) print('\nTest accuracy: {}'.format(test_acc))
Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= Conv1 (Conv2D) (None, 13, 13, 8) 80 _________________________________________________________________ flatten (Flatten) (None, 1352) 0 _________________________________________________________________ Dense (Dense) (None, 10) 13530 ================================================================= Total params: 13,610 Trainable params: 13,610 Non-trainable params: 0 _________________________________________________________________ Epoch 1/5 1875/1875 [==============================] - 3s 722us/step - loss: 0.7387 - sparse_categorical_accuracy: 0.7449 Epoch 2/5 1875/1875 [==============================] - 1s 793us/step - loss: 0.4561 - sparse_categorical_accuracy: 0.8408 Epoch 3/5 1875/1875 [==============================] - 1s 720us/step - loss: 0.4097 - sparse_categorical_accuracy: 0.8566 Epoch 4/5 1875/1875 [==============================] - 1s 718us/step - loss: 0.3899 - sparse_categorical_accuracy: 0.8636 Epoch 5/5 1875/1875 [==============================] - 1s 719us/step - loss: 0.3673 - sparse_categorical_accuracy: 0.8701 313/313 [==============================] - 0s 782us/step - loss: 0.3937 - sparse_categorical_accuracy: 0.8630 Test accuracy: 0.8629999756813049
保存模型
将模型保存成 SavedModel 格式,路径里加上版本号,以便 TensorFlow Serving 时可选择模型版本。
# Fetch the Keras session and save the model # The signature definition is defined by the input and output tensors, # and stored with the default serving key import tempfile MODEL_DIR = os.path.join(tempfile.gettempdir(), 'tfx') version = 1 export_path = os.path.join(MODEL_DIR, str(version)) print('export_path = {}\n'.format(export_path)) tf.keras.models.save_model( model, export_path, overwrite=True, include_optimizer=True, save_format=None, signatures=None, options=None ) print('\nSaved model:') !ls -l {export_path}
export_path = /tmp/tfx/1 INFO:tensorflow:Assets written to: /tmp/tfx/1/assets Saved model: total 88 drwxr-xr-x 2 john john 4096 Apr 13 15:10 assets -rw-rw-r-- 1 john john 78169 Apr 13 15:12 saved_model.pb drwxr-xr-x 2 john john 4096 Apr 13 15:12 variables
查看模型
使用 saved_model_cli
工具查看模型的 MetaGraphDefs (the models) 和 SignatureDefs (the methods you can call),了解信息。
!saved_model_cli show --dir '/tmp/tfx/1' --all
2021-04-13 15:12:29.433576: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0 MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs: signature_def['__saved_model_init_op']: The given SavedModel SignatureDef contains the following input(s): The given SavedModel SignatureDef contains the following output(s): outputs['__saved_model_init_op'] tensor_info: dtype: DT_INVALID shape: unknown_rank name: NoOp Method name is: signature_def['serving_default']: The given SavedModel SignatureDef contains the following input(s): inputs['Conv1_input'] tensor_info: dtype: DT_FLOAT shape: (-1, 28, 28, 1) name: serving_default_Conv1_input:0 The given SavedModel SignatureDef contains the following output(s): outputs['Dense'] tensor_info: dtype: DT_FLOAT shape: (-1, 10) name: StatefulPartitionedCall:0 Method name is: tensorflow/serving/predict Defined Functions: Function Name: '__call__' Option #1 Callable with: Argument #1 Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input') Argument #2 DType: bool Value: False Argument #3 DType: NoneType Value: None Option #2 Callable with: Argument #1 inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs') Argument #2 DType: bool Value: False Argument #3 DType: NoneType Value: None Option #3 Callable with: Argument #1 inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs') Argument #2 DType: bool Value: True Argument #3 DType: NoneType Value: None Option #4 Callable with: Argument #1 Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input') Argument #2 DType: bool Value: True Argument #3 DType: NoneType Value: None ...
部署模型
安装 Serving
echo "deb [arch=amd64] http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | sudo tee /etc/apt/sources.list.d/tensorflow-serving.list && \ curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | sudo apt-key add - sudo apt update sudo apt install tensorflow-model-server
开启 Serving
开启 TensorFlow Serving ,提供 REST API :
rest_api_port: REST 请求端口。
model_name: REST 请求 URL ,自定义的名称。
model_base_path: 模型所在目录。
nohup tensorflow_model_server \ --rest_api_port=8501 \ --model_name=fashion_model \ --model_base_path="/tmp/tfx" >server.log 2>&1 &
$ tail server.log To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2021-04-13 15:12:10.706648: I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:206] Restoring SavedModel bundle. 2021-04-13 15:12:10.726722: I external/org_tensorflow/tensorflow/core/platform/profile_utils/cpu_utils.cc:112] CPU Frequency: 2599990000 Hz 2021-04-13 15:12:10.756506: I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:190] Running initialization op on SavedModel bundle at path: /tmp/tfx/1 2021-04-13 15:12:10.759935: I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:277] SavedModel load for tags { serve }; Status: success: OK. Took 110653 microseconds. 2021-04-13 15:12:10.760277: I tensorflow_serving/servables/tensorflow/saved_model_warmup_util.cc:59] No warmup data file found at /tmp/tfx/1/assets.extra/tf_serving_warmup_requests 2021-04-13 15:12:10.760486: I tensorflow_serving/core/loader_harness.cc:87] Successfully loaded servable version {name: fashion_model version: 1} 2021-04-13 15:12:10.763938: I tensorflow_serving/model_servers/server.cc:371] Running gRPC ModelServer at 0.0.0.0:8500 ... [evhttp_server.cc : 238] NET_LOG: Entering the event loop ... 2021-04-13 15:12:10.765308: I tensorflow_serving/model_servers/server.cc:391] Exporting HTTP/REST API at:localhost:8501 ...
访问服务
随机显示一张测试图:
def show(idx, title): plt.figure() plt.imshow(test_images[idx].reshape(28,28)) plt.axis('off') plt.title('\n\n{}'.format(title), fontdict={'size': 16}) import random rando = random.randint(0,len(test_images)-1) show(rando, 'An Example Image: {}'.format(class_names[test_labels[rando]]))
创建 JSON 对象,给到三张要预测的图:
import json data = json.dumps({"signature_name": "serving_default", "instances": test_images[0:3].tolist()}) print('Data: {} ... {}'.format(data[:50], data[len(data)-52:]))
Data: {"signature_name": "serving_default", "instances": ... [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0]]]]}
REST 请求
最新模型版本进行预测:
!pip install -q requests import requests headers = {"content-type": "application/json"} json_response = requests.post('http://localhost:8501/v1/models/fashion_model:predict', data=data, headers=headers) predictions = json.loads(json_response.text)['predictions'] show(0, 'The model thought this was a {} (class {}), and it was actually a {} (class {})'.format( class_names[np.argmax(predictions[0])], np.argmax(predictions[0]), class_names[test_labels[0]], test_labels[0]))
指定模型版本进行预测:
headers = {"content-type": "application/json"} json_response = requests.post('http://localhost:8501/v1/models/fashion_model/versions/1:predict', data=data, headers=headers) predictions = json.loads(json_response.text)['predictions'] for i in range(0,3): show(i, 'The model thought this was a {} (class {}), and it was actually a {} (class {})'.format( class_names[np.argmax(predictions[i])], np.argmax(predictions[i]), class_names[test_labels[i]], test_labels[i]))
到此,关于“如何部署TensorFlow Serving”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!
标题名称:如何部署TensorFlowServing
地址分享:http://scgulin.cn/article/pcogid.html